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EFFECT OF CASING TREATMENT ON PERFORMANCE

OF A MULTISTAGE COMPRESSOR

by Leon M. Wenzel, John E. Moss, Jr., and Charles M. Mehalic

Lewis Research Center

SUMMARY

A J85-GE-13 engine was equipped with a compressor case which allowed changes to

the case wall over the rotor tips of six of its eight stages. The engine was run in an al-

titude facility with four inlet configurations: undistorted and with 1800 circumferential,
hub radial, and tip radial distortions. Compressor stalls were induced by closing the

exhaust nozzle while holding corrected speed constant.

Baseline compressor maps were taken for the four inlet configurations with solid

(untreated) compressor case inserts. Circumferentially grooved inserts were installed

in the first three and last three stages, and the compressor was mapped under similar

conditions. A third mapping was done with untreated inserts in the first three stages and

inserts having slots conforming to blade angles in the last three stages.

In most cases, the stall pressure ratio was the same as or lower than the baseline.

At 100 percent corrected rated speed with tip radial distortion, a small increase in stall

pressure ratio was noted with both types of inserts. Pumping capacity with the slotted

inserts and all inlet configurations was reduced. Overall compressor efficiency was not

appreciably different with the grooved inserts installed, but was 1 to 2 percentage points

lower with the slotted inserts in place. Most stalls occurred in the sixth or seventh

stage for the baseline and the slotted inserts. The grooved inserts made the fifth stage

a typical stall site. It was very difficult to locate the stall site precisely. Average

stage characteristics for the undistorted inlet showed little or no sensitivity to casing

treatment.

INTRODUCTION

Porous, slotted, and grooved casing treatments have been shown to have desirable

effects on single-stage compressors (e. g., refs. 1 to 3). These casing treatments have



been effective in increasing the flow range, stall margin, and distortion tolerance of the

compressor.

A program was started at the Lewis Research Center to extend these results to a

multistage compressor. Because of the large amount of experience with the J85 at

Lewis, this engine was chosen for the program.
An analytical study was made which showed that, if the casing treatment could mod-

ify the individual stage characteristics of the J-85 as it had in the single-stage compres-

sor work, a gain in flow range would be realized (ref. 4).

This increase in flow range would serve to decrease the sensitivity of the compres-

sor to inlet distortion. The study indicated that casing treatment applied to the front and

rear stages would be beneficial.

To evaluate this prediction experimentally, Lewis contracted with the General Elec-

tric Company to design and fabricate a special compressor case for a J85-GE-13 en-

gine. The case was equipped with removable inserts over the tips of the rotor blades of

stages 1, 2, 3, 6, 7, and 8. Three sets of inserts were provided: one set was left un-

treated for baseline testing; one set was machined with circumferential grooves; and

one set was machined with blade angle slots.

This report presents the results of an experimental program conducted with the en-

gine installed in an altitude facility. The two types of casing treatment are compared

with the baseline case at four corrected engine speeds (80, 87, 94, and 100 percent of
rated) with the inlet undistorted and with 1800 circumferential, hub radial, and tip radial

distortions. Overall compressor maps are presented. Individual stage characteristics

and overall compressor efficiency are compared for the various casing treatments with
the undistorted inlet.

APPARATUS

Engine

The compressor case of a J85-GE-13 engine was redesigned to permit changes in
the case wall over the rotor tips of the first three and last three of the eight stages.
This was effected by providing segmented rings, T-shaped in cross section, which

slipped into mating grooves in the compressor case. Figure 1(a) shows half of the com-
pressor case with rings in place; figure l(b) shows the case with the rings removed.
The eighth-stage ring and groove are not apparent in these photographs; this ring is

sandwiched between the compressor case and the main frame.
Three sets of rings were provided for testing. Two sets of rings were machined for

different casing treatments; one set was left blank for baseline testing. A sketch of a
typical grooved ring and dimensions for all the rings are presented in figure 2(a). The
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grooves were circumferential and continued over the inner surfaces of the rings. Fig-
ure 2(b) shows a sketch and dimensions of the slotted ring. The angles of the slots

were such that they were parallel to the chords of the rotor blades at their respective
stages. Only the rear three stages were tested with slotted rings.

The design of the grooved and slotted casing treatments was based on the results of

an experimental study in which casing treatment dimensions were systematically varied
(ref. 5)

The variable inlet guide vanes of the engine were linked to compressor interstage
bleed doors so that, when the guide vanes were fully closed, the bleed doors were fully
open. These were operated according to the manufacturer's schedule; bleed doors
varied linearly from fully open at a corrected engine speed of 80 percent to fully closed
at 94 percent. The sensitivity of the bleed schedule to inlet temperature was removed.
This allowed comparison of results without concern over inlet temperature.

Since this was a stall program, a first-stage turbine nozzle with approximately
74 percent nominal area was used. This nozzle allowed compressor stalls without ex-
cessive turbine temperatures.

The exhaust nozzle was manually controlled to effect compressor stall. Six block-
age plates were added to the inner surface of the nozzle. With these in place, the range
of nozzle area available was 400 to 1130 square centimeters.

The engine was tested without distortion and with three screen patterns at the inlet:
1800 circumferential, tip radial, and hub radial. The screens were attached to a sup-
port structure located 44. 1 centimeters upstream of the compressor face. Details of
the support structure are given in reference 6.

The distortion screen used was a square grid made up of 0. 081-centimeter wire
spaced 0. 282 centimeter apart, with approximately 50 percent blockage. The radial
screen patterns covered 40 percent of the inlet area.

At a corrected engine speed of 100 percent typical distortions ((average high
pressure - average low pressure)/average face pressure) of 12 to 13 percent were ob-
served.

Instrumentation

The compressor face was instrumented with an array of 60 probes located 3. 7 cen-
timeters upstream of the compressor face. The array was made up of 12 rakes of five
probes; the probes on each rake were area weighted radially. Inlet temperature was

measured with 12 thermocouples located 7. 9 centimeters upstream of the engine face.

Total-pressure and -temperature rakes were installed at the discharge of each

compressor stage and were axially located at the leading edge of the stator blades and
alined parallel to the blades. The rakes were made up of three probes, at 10, 50, and



90 percent of the immersion depth. Wall static-pressure taps were located at each sta-

tor row. Also, closely coupled, high-response pressure transducers at each stator row
were provided to locate the sites of compressor stalls.

Compressor discharge instrumentation was installed through the four customer

bleed ports at the rear of the compressor. At each port, three total-pressure, one
static-pressure, and three total-temperature probes were used. A sketch of the pres-
sure probes is shown in figure 3. The forward projection of the combustor prevented the
building of the rake to span the entire flow stream. The arrangement of temperature
probes was similar.

In the data reduction program, the interstage pressures and temperatures were

averaged on an area-weighted basis to provide average stage discharge conditions. At

the compressor discharge similar weightings were used: 20 percent for the inner
probes, 60 percent for the middle probes, and 20 percent for the outer probes.

Engine airflow was calculated from pressures and temperatures measured in a ple-
num upstream of the inlet by using a previously determined inlet calibration.

PROCEDURE

Tests were conducted with ambient inlet temperature and a nominal inlet pressure
of 6. 6 newtons per square centimeter. These inlet conditions yielded a Reynolds num-
ber index of 0. 65 to 0. 70 at the compressor face. The altitude chamber was maintained
at approximately 3. 1 newtons per square centimeter to ensure a choked exhaust nozzle.

For each configuration of casing treatment, the compressor was mapped with an un-
distorted inlet and with screens designed to produce 1800 circumferential, hub radial,
and tip radial distortions. Each mapping consisted of four constant corrected speed
lines (80, 87, 94, and 100 percent of rated). Several steady-state data points were
taken along each speed line between those for wide-open exhaust nozzle area and stall.

As data were taken along the constant corrected speed lines, turbine discharge total
temperature was observed on a control-room gage and recorded. This gage was watched
carefully as the engine was stalled to obtain turbine discharge temperature at stall.
Data obtained in this way were used to draw curves of compressor pressure ratio and
corrected airflow as a function of turbine discharge temperature. These curves were
extrapolated to the turbine discharge temperature at stall to determine compressor
pressure ratio and corrected airflow at the stall point.

As stall was approached, an FM tape recorder was started to record data from the
high-response interstage static-pressure transducers. These data were used to locate
stall sites.
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RESULTS AND DISCUSSION

Compressor Maps

Compressor maps for the untreated rings are presented in figure 4. In this figure,
the open symbols represent data, the solid symbols are stall points extrapolated on the

basis of turbine discharge temperature, and the lines are faired through the data. Data

in this figure were corrected for errors in speed setting; for example, if a point was

taken at 94. 1 percent corrected speed instead of the desired 94. 0 percent, pressure ra-

tio and corrected airflow were adjusted by appropriate sensitivities.

The effect of inlet distortion is consistent with previous findings (ref. 5). The

1800 circumferential distortion causes losses in stall pressure ratio at all speeds, par-
ticularly the higher two. Tip radial distortion also causes losses in stall pressure ra-

tio. At the lower three speeds, an increase in pumping capacity is noted. Hub radial

distortion has little effect on stall pressure ratio at the higher three speeds, and pump-

ing capacity is reduced.

Figure 5 presents compressor maps taken with the circumferentially grooved rings

installed in stages 1, 2, 3, 6, 7, and 8. The same procedures and distortion screens

were used in obtaining these data as in obtaining those presented in figure 4. The lines

in figure 5 represent untreated ring performance for the same conditions.

Except for a slightly higher stalling pressure ratio at 100 percent corrected speed

with tip radial distortion and higher airflow at 94 percent corrected speed with the un-

distorted inlet, the performance with grooved rings is the same as or worse than the
baseline performance.

Compressor maps taken with slotted rings in stages 6 to 8 are presented in figure 6.
An improvement in stall pressure ratio at 100 percent corrected speed with tip radial
distortion is noted. Pumping capacity is down for all distorted cases, although it is the
same as that for the untreated rings with the undistorted inlet.

Figure 7 presents compressor efficiency as a function of corrected inlet airflow for
the undistorted inlet with the three casing configurations. The efficiency is computed to
account for bleed flow at the lower speeds. Only small differences in efficiency are

noted between the untreated and grooved ring cases, but efficiency is 1 to 2 percentage
points lower for the slotted ring case.

Stall Sites

A summary of stall sites is presented in table I. These stall sites were determined
from recordings of the high-response interstage static-pressure transducers. The stage
exhibiting the first drop in pressure is listed. The judgment of which pressure dropped
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off first was often subjective; arguments could be made for two or more pressures.

This ambiguity is indicated in the multiple entries appearing in the table. In three in-

stances no determination of stall site could be made. Transient recordings were not

available in two instances.

With untreated rings stalls occurred largely in stages 6 and 7, occasionally stage 5.

Hcwever, with the grooved rings installed, most of the stalls occurred at stage 5. This

fact suggests that an improvement in stall margin in the rear stages due to the treated

rings had shifted in the stall site forward to the untreated stage 5. But this is not seen

in the slotted ring data, which show stall occurring predominately in stages 6 and 7.

Stage Characteristics

Pressure and temperature characteristics for the individual stages are presented in

figures 8 and 9, respectively. The flow coefficient is defined as

Vi
Zii

U
i

The pressure coefficient is defined as

(Yi - 1)/ i -
Pi

P, i - 1 gRTi- 1
i-1 -1 U

1

The temperature coefficient is defined as

Ti-1

Yi-1 Ti-1T,i 1 gRTi-1

Yi-- 1U2

where

g gravitational constant, (kg)(cm)/(N)(sec 2 )

i ith stage conditions

P average total pressure, N/cm 2
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R universal gas constant, (N)(cm)/(kg)(K)

T average total temperature, K

U rotor tip velocity, cm/sec

Vz  axial flow velocity, cm/sec

7 ratio of specific heats

qc flow coefficient

I/p pressure coefficient

41T temperature coefficient

The pressures and temperatures used to calculate these coefficients were averaged
on an area-weighted basis. However, the calculation of average conditions at the com-
pressor discharge with the 20-60-20 percent weighting described in the section Instru-
mentation is not really proper. In fact, any weighting assigned to these probes might be
questioned.

As shown in figure 3, the innermost or "hub" probe lies near the center of the flow
path. Readings from this probe could be more representative of average conditions than
the weighted average. Accordingly, pressure and temperature characteristics for the
eighth stage are presented for both weighted average and hub conditions. Although the
differences are significant for the calculations across the eighth stage, the overall com-
pressor parameters are only minutely affected.

In some instances, one or more pressure or temperature probes malfunctioned.
The missing values were filled in by interpolation, by using a third-order polynomial
least-squares fit.

The wide separations between the groups of data in the first-stage plots are caused
by the variable inlet guide vanes: at 94 percent rated speed and above, the vanes were
axial; at 87 percent rated speed, the vanes were nominally half closed; and at 80 percent
rated speed, the vanes were fully closed.

A speed effect is evident for the other stages also. In the stages where different
casing treatments were tested, the differences in the data due to speed are more pro-
found than any difference due to casing treatment.

SUMMARY OF RESULTS

Compressor performance of a J85-GE-13 engine with two types of casing treatment
was compared with that for the untreated case. Data were obtained for rotor speeds
from 80 to 100 percent rated with no inlet distortion and with screen-induced 1800 cir-
cumferential, hub radial, and tip radial distortions. The following results were ob-
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tained:

1. Casing treatment was not effective in extending flow range or increasing stall

margin.

2. Individual stage pressure and temperature coefficients were not appreciably af-

fected by casing treatment.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, October 8, 1974,

505-05.
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TABLE I. - SUMMARY OF STALL SITES

Inlet distortion Corrected engine speed,

percent rated

80 87 94 100

Stall site, stage

Untreated rings

None 5 (a) 6, 8 7

1800 Circumferential (b) 5, 6 6 6

Tip radial 6 7 6 (a)

Hub radial (b) 5, 6 6 6, 7

Grooved rings in stages 1, 2, 3, 6, 7, and 8

None 5 5 5 6

1800 Circumferential 7 5 5 5

Tip radial 5 5 5 7

Hub radial 7 7 5 5

Slotted rings in stages 6, 7, and 8

None 7 7 6, (b) 7

1800 Circumferential 5, 6 5, 6, 7 6, 7 7, 8

Tip radial (b) 7 7 6

Hub radial (b) 5, 6 7 7

aTransient recordings were not available.
bStall site could not be determined.



C-73-3520

(a) With inserts in place.

C -73-3519

(b) With inserts removed.

Figure 1. - Compressor case.
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Depth

Width - -
Land -H4§-

Stage Number Width, Depth, Land,
of cm cm cm

grooves

1 6 0.152 0.610 0.076
2 6 .102 .406 .051
3 6 .061 .229 .031
6 6 .051 .203 .025
7 5 .051 .203 .025
8 5 .051 .203 .025

(a) Grooved.

Length Depth

Width

Stage Number of Width, Length, Depth,
pairs cm cm cm

of slots

6 512 0. 102 0.267 0.305
7 522 .094 .226 .279
8 524 .089 .241 .254

(b) Slotted.

Figure 2. - Sketch and dimensions of rings.
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Combustor

Figure 3. - Sketch of pressure probes at compressor discharge.
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8 O Data points for untreated rings
0 Extrapolated stall points for

untreated rings
Line faired through stall points

7 for untreated rings

100

6- Corrected
engine speed, 94

5- percent rated

87

4-

!R- 80

- 3 I I I I
(a) No inlet distortion.

8

7

100

6-

94

5-

87

4-

80

3 I I I I
12 13 14 15 16 17 18 19 20

Corrected inlet airflow rate, W16, kg/sec
(b) 1800 Circumferential inlet distortion.

Figure 4 - Baseline compressor performance.
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8
O Data points for untreated rings
0 Extrapolated stall points for

untreated rings
7 - Line faired through stall points

for untreated rings
100

6-
94

Corrected
engine speed,

5 -percent rated

87
4

080

dr 3
(c) Tip radial inlet distortion.

8-

7

100

6
94

5-

87

80

3 I I I I I I
12 13 14 15 16 17 18 19 20

Corrected inlet airflow rate, WIOI6, kglsec

(d) Hub radial inlet distortion.

Figure 4. - Concluded.
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8 -

O Data points for grooved rings 0

* Extrapolated stall points for
grooved rings

7 - - Untreated rings 100

6 - Corrected O

engine speed, 94

5 percent rated

87

4

C -80

o3
(a) No inlet distortion.

7

100

6

94

5-

87

4-

80

I I I I I I I
12 13 14 15 16 17 18 19 20

Corrected inlet airflow rate, W'I/6, kglsec

(b) 1800 Circumferential and inlet distortion.

Figure 5. - Compressor performance with grooved rings in stages 1, 2, 3, 6, 7, and 8.
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8-
0 Data points for grooved rings
0 Extrapolated stall points for

grooved rings
7 Untreated rings

100

6
Corrected 94

engine speed,

5 percent rated

87

CL 80
mC-

08-

8 100

6

94

5

4

80

3 I I I I I I I
12 13 14 15 16 17 18 19 20

Corrected inlet airflow rate, W /i6, kg/sec

(d) Hub radial inlet distortion.

Figure 5. - Concluded.
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8

O Data points for slotted rings
* Extrapolated stall points for

7 - slotted rings
- Untreated rings 100

6 Corrected
engine speed,

percent rated

87

80

O.c; 3 I I I I
(a) No inlet distortion.

C-

7

6

0 94

5-

87

4-

3 I I I I I I I 
12 13 14 15 16 17 18 19 20

Corrected inlet airflow rate, W,/il/, kgIsec

(b) 1800 Circumferential inlet distortion.

Figure 6. - Compressor performance with slotted rings in stages 6, 7, and 8.
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O Data points for slotted rings
* Extrapolated stall points for slotted

7 - rings
Untreated rings

100

6 - Corrected
engine speed, 0 97

percent rated
5-

0O

4
80

o

(c) Tip radial inlet distortion.

5 87

4-

12 13 14 15 16 17 18 19 20
Corrected inlet airflow rate, W'16, kg/sec

(d) Hub radial inlet distortion.

Figure 6. - Concluded.
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Rings

O Untreated
O Grooved
0 Slotted

Open symbols denote data points
Solid symbols denote extrapolated

stall points

- Line faired through stall points
for untreated rings

.96 - Corrected
engine speed,

.92 - percent rated

80

.88 -87

.84

.80 I I I
(a) Baseline.

. 96

.92 -
08

87
.88

.84

.80 I I I I00

(b) With grooved rings in stages 1, 2, 3, 6, 7, and 8

.96

.92 -

.88 - 87

.84 -
100

.8so 
I I

12 13 14 15 16 17 18 19 20
Corrected inlet airflow rate, WI6, kgsec
(c) With slotted rings in stages 6, 7, and 8.

Figure 7. - Compressor efficiency.
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.32 - O 0
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.30 0

M o

.28 percent rated

S 87

.26 - -7 80

Open Corrected untreated
engine speed,

.2218 Solid symbols dpercent rated

rings

Vv

.16 - 17
vv f

.14 1 I I I I I I
.50 .52 .54 .56 .58 .60 .50 .52 .54 .56 .58 .60 .62

Flow coefficient

(a) Stage 1. (b) Stage 2.

Figure 8. - Pressure characteristics for individual stages.
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engine speed,
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.36 - percent rated

O 100
0 94

S * 0 87
S34 - tD 0% V 80

O O Open symbols denote untreated
rings

.32 _ Solid symbols denote grooved
rings

U, O D 0

30 0

.28 I I I I I
.50 .52 .54 .56 .58 .60 .62 .64 .52 .54 .56 .58 .60 .62 .64

Flow coefficient
(c) Stage 3. (d) Stage 4.

Figure 8. - Continued.
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O 100
O 94
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o 6b v 80

O 6 Plain open symbols denote
0 "Euntreated rings
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26 - O O slotted rings
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.24 - 0 "

V o Qy u 0
.22 -

0o * . V '

.18II I I I I I_1
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Flow coefficient

(e) Stage 5. (f) Stage 6.

Figure 8. - Continued.
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Flow coefficient
(g) Stage 7. (h) Stage 8, average.

Figure 8. - Continued.
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Flow coefficient

(i) Stage 8, hub.

Figure 8. - Concluded.
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.36 -

0 00• o
I 3

R] V7

.30 -- O
0+

- .28 0

• .26 - Corrected
R •engine speed,

E 4 0* percent rated
024 - 0 100

u 94
0 87
7 80.22 - y

Open symbols denote untreated
V rings

V

.18 V

.16 I I I I I I I I
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Flow coefficient

(a) Stage 1. (b) Stage 2.

Figure 9. - Temperature characteristics for individual stages.
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Figure 9. - Continued.
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Figure 9. - Continued.
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